USFS, PACIFIC SOUTHWEST REGION 5, SIERRA NATIONAL FOREST

Evaluation of Human Factors/Leadership Training Effectiveness and Analysis of Prescriptively Implemented Training Approaches

Adam Hernandez

Fuels Management Technician High Sierra RD, Sierra NF 29688 Auberry Road Prather, CA 93651

April, 2011 Submitted in partial fulfillment of the requirements for Technical Fire Management 26

Table of Contents

Preface	ii
Executive Summary	iii
Introduction	
Background and Significance	3
Scope	9
Decision Maker's Problem Statement	
Management Goal	
Project Objective	
Methods	
Assumptions	
Results	
Discussion & Recommendations	
Literature Cited	
Appendix	34

List of Figures

FIGURE 1. Comparison of national fire count and acres burned statistics for the years of 1990-2009. FIGURE 2. Causes of death for the 73 Federal Employees who died during wildland fire operations 1	4 .990-
2006	6
FIGURE 3. Federal and National wildland firefighter entrapment probabilities and trends for the yea	ars of
1994-2009	20
FIGURE 4. Exposure hours and exposure trends for all national wildland fire resources for the years	of
1994-2009	20
FIGURE 5. Residual plotting for national results	22
FIGURE 6. Residual plotting for federal results	23
FIGURE 7. Federal "L" series training "ramp up" trends since training implementation in 2000	24
FIGURE 8. Example of hypothetical prescriptive training placement based off of identified trends/ne	eds
vith in specific fireline posistions	28

List of Tables

TABLE 1. Trend analysis for exposure hours, entrapment counts and entrapment probabilities for the vears of 1994-2009
TADIES Network and federal and real and federal and fe
TABLE 2. National and federal values for significant and insignificant explanitory variables that were run
through regression modeling
TABLE 3. Federal "L" series training attainment time frames since 2000 as provided by the IQCS
database24

Preface

Currently, I am a second year District Fuels Management Technician on the Sierra National Forest in Region 5. I have been with the Forest Service since 2002. I started my career with the Groveland Hotshot crew on the Stanislaus National Forest, located in the central Sierra Nevada range of California. My initial intent, for my job with the Forest Service, was to support my college efforts at California State University, Chico, with my final goal to one day become a teacher. I became a permanent employee with the Hotshots in 2004 and the following year I graduated with a bachelor's degree in Liberal Studies with a minor in Manufacturing Technology, however I decided that my career path would be with the Forest Service. In 2006, while I was still with the Hotshot crew, I was selected to work as a detailed smokejumper in McCall, Idaho, this was the most demanding and exciting experience of my Forest Service career. In 2007, I promoted to the squad leader position back on the Groveland Hotshot crew where I enjoyed my time in this position. In 2008, I transferred to the Sierra National Forest in an effort to move closer to my family and home and I have been here since.

Acknowledgments:

First and foremost, I would like to thank my amazing wife Corinne for supporting me through this process. Without her endless support and understanding I would have not been able to make such a time sacrifice away from home. I am thankful for the network of family and friends that picked up the slack for me both at home and at work during my travels to Washington. I am grateful for the support, confidence and encouragement that have been shown to me by the Sierra National Forest and Region 5. I truly appreciate the valuable insights, discussions and directions that were provided by my colleagues, Washington Institute staff and faculty during this Technical Fire Management process. Thanks to all my supervisors and the NWCG firefighting community for the help in ascertaining the information to complete this project.

Specifically: Dr. Bob Loveless- for helping me make this project a reality.

Van Arroyo- for providing the angle that made this project work.
Carolyn Ballard- for the constant support and critical reviews.
Sam Marouk- for the encouragement and for being there to bounce ideas off of.
Shawn Baker- for the enthusiasm that created my current interest in Human Factors.
Neil Sugihara- for the support, reviews and critical thinking.
Eric Eastep- for taking the time to critically review a MYL bro's paper.
Travis Dotson- for the insight, data and good discussions.
Kari Boyd-Peak- for tracking down data like a bloodhound and the forward thinking.
Larry Sutton- for the encouragement essential dialog and professional insight.
Jim Cook- for the knowledge, insight and background related HF/L development.
Jeff Shutt & Burl Wade- for the discussions, and for picking up my slack on the HSRD.

Executive Summary

By investing in Human Factors/Leadership (HF/L) training the wildland fire service has attempted to develop error resilience within the wildland fire culture. The expectation of this training is that it would produce a positive culture change resulting in an incremental reduction in the likelihood of entrapment and or fatalities. Through statistical sampling and by using regression modeling techniques, this study attempts to determine the relationship, strength and significance of HF/L training contributions at reducing the probability of entrapments since its implementation in 2000. This study compares entrapment rate probabilities 6 years pre HF/L training was considered effective if results showed (to a significance level of $\alpha \le .05$) HF/L training is related to a decrease greater than or equal to 20 percent in the probability of entrapment per 1,000 person-hours exposed during the years of 2000-2009 as compared to the years 1994-1999. The initial intent of the study was structured to compare 10 years pre HF/L training to 10 years post HF/L training. Preliminary assessments found information from the National Situation Report Archive ranging from 1990-1993 unusable for this study as a result of differing formats.

Currently, entrapments make up 65 percent of on the ground fire line caused fatalities and for this reason entrapments were the focus of this study. Whenever mitigation strategies are applied to an identified problem it needs to be ensured that an acceptable monitoring/evaluation program accompanies it to measure the effectiveness and efficiency of the effort. The advantage to strategically and systematically monitoring/evaluating trends related to accidents will allow for adjustment and focused mitigation efforts.

Results from this study's regression modeling show that national entrapment probability rates have decreased by 80 percent during the training era and HF/L training is significantly related to this (p-value 0.000794). Federal entrapment probabilities have decreased by 73 percent during the training era, similarly, HF/L training is also significantly related to this decrease (p-value 0.0287). When comparing entrapment rates 6 years pre HF/L training, to the 10 years post HF/L training, results support the alternative hypothesis (to a significance level of $\alpha \le .05$) that Human Factors/Leadership training, since implemented in 2000, has been effective in reducing the probability of fatal and non-fatal entrapments among wildland firefighters by \ge 20 percent. Results related to the relationship strength and significant of HF/L contributions in reducing entrapment rates were identified through residual plotting and show strong relationships between entrapment rate reduction and the "ramping up" of HF/L training during the most recent 10 years of this study. The analysis and evaluation technique that this study presents is intended as a preliminary method or tool to evaluate the effects of HF/L training. A more comprehensive evaluation over a longer study period needs to be made in an attempt to account for all the factors involved.

Introduction

Studies done by the Federal Aviation Administration's (FAA) Human Factors Division have noted that humans, by their very nature, make mistakes; therefore, it should come as no surprise that human error has been implicated in a variety of occupational accidents, including 70 to 80 percent of those in civil and military aviation (O'Hare, Wiggins, Batt, & Morrison, 1994; Yacavone, 1993). A similar study done by U.S. Department of Transportation's (DOT) National Highway Traffic Safety Administration (NHTSA) (2008) revealed that 85 percent of the nations motor vehicle accidents were a result of human performance issues such as recognition errors (41%), decision errors (34%) and performance errors (10%). Comparable studies done by nuclear power facilities, medical professions and the US Military provide similar trends that hold arguably true for nearly all other high-risk environment occupations.

The National Wildfire Coordinating Group (NWCG), which is represented by five federal agencies: The US Forest Service (USFS), Bureau of Land Management (BLM), Fish and Wildlife Service (FWS), National Park Service (NPS) and Bureau of Indian Affairs (BIA), initiated the development of Human Factors/ Leadership (HF/L) training following the events of the 1994 South Canyon Fire. This fire killed 14 firefighters during on the ground suppression operations and following a number of investigations and incident reviews, human error and the absence of leadership was noted as major causal factors leading to the outcome of the disastrous event (Putnam et. al. 1996). These events initiated an outcry to develop a new skill set for firefighters relating to the human dynamics of firefighting. Spearheaded by the NWCG's newly formed Leadership sub-committee, this skill set expansion was embodied in the development of Wildland Firefighter HF/L Training, otherwise known as "L" series courses. Six "L" series courses have been developed to date by the NWCG and are currently delivered to federal wildland firefighters on a promotional based approach, and to other agencies on an as needed basis. Human Factors, related to firefighting, are the direct or indirect causal factors associated with human error. These factors range from skill based errors, perceptual errors, decision errors, effects from organizational influence and hazardous attitudes or un-recognized conditions that contribute to accident causation (NWCG, Safety and Health Working Team (SHWT) 2000).

By investing in HF/L training the wildland fire service has attempted to develop error resilience within the wildland fire culture. This training was expected to promote an outcome that would create positive culture change while effectively producing an incremental reduction in the likelihood of entrapment and or fatalities. As previously stated, evaluations conducted in comparable fields of study show that on average 70 to 85 percent of the causes associated with accidents are related to human factors. If the same holds true for fireline accidents, it is expected that since HF/L training has been implemented, a reduction in burnovers and entrapments has occurred.

The difficulty in assessing the effectiveness of this intervening strategy is the ability to evaluate how effective HF/L training has been in the form of quantifiable results. To date, however, the inability to discern a systematic and formalized method to evaluate the utility and theoretical similarities of human factors trends within the wildland fire service leads us to question how much of an impact HF/L training has actually made on fatal and non-fatal entrapment reduction. In order to be objective, strategic and quantifiable methods must be developed to evaluate the success or deficiencies of the training efforts. Furthermore, an examination of the strategic placement of these training courses, based off of information located in the current post accident database, may reflect the most logical and efficient method of HF/L training deployment. Having been based on empirical data, the advantage to strategically and systematically evaluating trends related to accidents will allow for adjustment and prescriptive placement of critical training based on quantifiable analysis. In essence, it is imperative to first assess if there has been a reduction in entrapments since HF/L training has been implemented to the wildland fire service, then, to assess the efficiency in which the courses are being deployed.

The purpose of this project is to test the hypothesis (to a significance level of $\alpha \le .05$) that Human Factors/Leadership training, since implementation in 2000, has been effective in reducing the probability of fatal and non-fatal entrapments among wildland firefighters by 20 percent or greater. By evaluating rates of entrapments per person-hours exposed on the fireline we may be able to assess whether or not, and to what extent, these training strategies are proving effective. In addition, as a supplemental point of interest, this project will analyze the point in a firefighter's career that these six training courses are typically being deployed and if the current deployment approach is the most efficient from a statistical risk-based standpoint. By reviewing the wildland fire service post-accident database we may be able to prescriptively place error reducing interventions in the most logical and efficient manner. Human factors, as defined by the Federal Aviation Administration (FAA) System Safety Handbook (2000), is a multidisciplinary effort to generate and compile information about human capabilities and limitations and apply that information to systems, procedures, jobs, environments, training, staffing and personnel management to produce safe comfortable and effective human performance. The benefit of human factors is that it enhances the probability of increased performance, safety and productivity. Human factors are a component of the total systems performance; however, the FAA recognizes that it is a component that encompasses the largest percentage of total system failures. By increasing the probability that the operator can perform the tasks effectively in the appropriate environment, the total system performance and safety will increase significantly.

The wildland fire workforce regularly faces a work environment filled with adversity and uncertainty. A work environment that is as dynamic as a section of "hot line" requires specialty training that may assist firefighters to better gauge situations and personal capabilities. Ideally this training would eliminate or, more realistically, minimizing fire line fatalities. Motivated by the inherent danger, complexities and dynamics of the job, training policies and techniques are continuously evolving within the wildland fire service as more is learned about fire and the science that helps predict estimated outcomes. In recent years the perspective is that more complex decisions and tactics are being should red by fire line leaders due to the increasing complexities of wildland firefighting. These complexities have been largely attributed to urban interface, politics and larger fire sizes associated with increased fuel loading and dryer climactic conditions, see Figure 1 (Keeley et. al. 2008, TriData Report 1996). These complexities, which have become more prevalent, elevate the potential for decision, recognition and performance issues. The continual development and implementation of training has played a vital role in safety awareness and progression of the current wildland fire culture (DOI/USDA Report to Congress, Wildland Firefighter Safety 2010). Although policy changes and scientific research continues to evolve understanding and aspects of fire behavior and risk analysis, there is a human element that undoubtedly dominates the ability to use this information effectively. The emphasis that is placed on continuously refining this training has the ability to provide immense benefits in terms of fireline safety and entrapment avoidance.

Since variables associated with complexities, as earlier stated, are considered a major contributor to potential exposure, the variables related to increased exposure will be addressed as this study's primary variables of interest.

The NWCG Glossary of Wildland Fire Terminology (2011) defines an entrapment and burnover as the following:

Entrapment- "A situation where personnel are unexpectedly caught in a fire behavior related, life-threatening position where planned escape routes and safety zones are absent, inadequate, or have been compromised. An entrapment may or may not include deployment of a fire shelter for its intended purpose. These situations may or may not result in injury (or death). They include "near misses".

Burnover- "An event in which a fire moves through a location or overtakes personnel or equipment where there is no opportunity to utilize escape routes and safety zones, often resulting in personal injury or equipment damage".

Entrapment, for the sake of simplicity, will be the term used throughout this paper to describe the above two events. This study is concerned with both events equally and because an entrapment is what occurs in either case; it will be used as the primary descriptor for the two events.

After The South Canyon Fire a major shift in the wildland firefighting culture began to take place focusing on the "human element" (Jim Cook, personal communication, May, 2011). Fire managers realized that the human condition played a vital role in a firefighter's ability to obtain increased awareness and decision making accuracy during adverse work conditions (Putnam *et al.* 1996). There was a need to improve training beyond fire science research and an undertaking was made to address the human element behind firefighting. A study done by an Army Research

Laboratory (1997) has realized substantial benefits in human error reduction by implementing Human Factors Integration Programs within particular systems of concern. This same approach of "human focused training" is what the NWCG felt was needed for the wildland fire workforce. By investing in HF/L training, the wildland fire service has attempted to develop error resilience within the wildland fire culture, effectively leading to an expected outcome that would produce an incremental reduction in the likelihood of entrapment and or fatalities (Larry Sutton, personal communication, May, 2011).

Comparable studies show that 70 to 85 percent of accidents in high risk environments can be attributed to human performance issues. However, it needs to be noted that many of the studies that have taken place, in regards to assessing accident causing conditions from the DOT (2008), FAA or US Navy/Marines (1977-1992) consider interaction between mechanical and human factors associated with accident causation, knowing this, a small portion of the overall accident probability will always be dedicated to broken parts, mechanical failures or malfunctions associated with automobiles, aircraft or machinery. Since on the ground wildland firefighting activities are almost exclusively human driven and lacks the mechanical failure aspect, it could be argued that the rate of accidents in the wildland fire service, attributed to human error, would be greater than the 70 to 85 percent mean and as a result a critical concern. It therefore appears, that intervening strategies aimed at reducing the occurrence and consequences of the human factor has potential to make a substantial impact on entrapment reduction. For this study, the focus will be on the rate change of fatal and non-fatal entrapments since intervening strategies have been implemented. This approach of measuring pre and post conditions is very common in medical studies where the response variable, probability "Y" of catching a disease (or dying), is based on whether the patient receives the explanatory variable(s) of treatment "X" (Bob Loveless, personal communication, May, 2011).

The Chair of the NWCG Leadership sub-committee is uncertain about whether the implementation of HF/L training, since inception, has been effective in terms of reducing the probability of fatal and non-fatal entrapments on wildland fires. According to the NWCG's Wildland Firefighter Fatalities in the United States Report (2007), 40 percent of the fatalities suffered by federal wildland firefighters between the years of 1990-2006 were from entrapments. Figure 2 shows the breakdown of federal fatalities during wildland fire activities, 1990-2006. This constitutes a larger percentage when looking at the causes of death primarily associated with on the ground suppression functions. If vehicle and aircraft accidents are omitted, then the percentage of burnovers is increased to 65 percent of the cause of death. For this reason, it seems imperative to address entrapments and their causal factors as a substantial and critical concern. Additionally, there is uncertainty about whether the current training distribution method is the most efficient in terms of providing critical training tools at the most logically efficient career point. Paraphrased, the Economic Glossary (2011) defines efficiency as the state of resource allocation

that exists when the highest level of satisfaction is achieved from the available resources. According to the TriData Report Phase III* (1998), goal #64, the implementation approach for training is to develop a needs-based strategy for training across agencies (i.e., matching training availability to the quality and quantity of training needed). An economic approach would be useful in terms of maximizing the use of resource efforts (training) so the benefits obtained from efforts are realized to their full potential.

Total: 73

The current training distribution method of HF/L training, since inception, has been based on a logical promotional approach, meaning that, courses are made available to firefighters prior to their ascent to the next leadership position or qualification rank. The intent is to match training concepts to experience levels. The timing for the training is critical because the curriculum is designed so the training tools provided do not surpass the experience and skill of an advancing firefighter. As the firefighter advances, the level, complexities and concepts provided in the curriculum advances as well. As a secondary point of interest an assessment of HF/L training timelines will be performed within this study to identify actual training regiments.

^{*}TriData Report: Wildland Firefighter Safety Awareness Study-This was a landmark safety study for the interagency wildland fire community that helped shape fire management direction during the past decade. TriData studies evolved from the 1994 South Canyon Fire fatalities and several of the NWCG Safety and Health Working Team (SHWT) projects and initiatives came out of this study as did the formation of the Wildland Fire Lessons Learned Center (LLC).

The implementation of the HF/L training program has taken several years to deliver, and incorporate into the wildland fire culture. It should be mentioned that the HF/L program could not have been fully effective immediately and that we would have expected the effect of the program to phase in over a number of years following the implementation in 2000. Training programs need a significant amount of time between the program implementation and evaluations of effectiveness. There is some uncertainty as to if this study is premature on its attempt to evaluate successes of the HF/L training program. However, after 16 years of development and 12 years since HF/L training was implemented (2000), it is uncertain how effective the efforts have been thus far and whether the current approach is the most effective and efficient method of course implementation.

An efficiently implemented HF/L training program could be thought of as one that is providing training on a *prescriptively based approach* prior to as well as during the career phases when probabilities of risk are elevated. Studies done by R. Duffy and J. Saull on Risk Profiles for Nuclear Power (April 2004. 1 p.) state that, "We need to quantify the probability of human error for the system as an integral contribution within the overall system failure, as it is generally not separable or predictable for *actual* events. We also need to provide a means to manage and effectively reduce the failure (error) rate".

HF/L training is just one of the actions conducted within the wildland fire community that affects the occurrence of entrapment. The entire progression of entrapment reduction takes place within a larger context of culture and policy changes, prioritization of land management practices and situational awareness. Through dialog with numerous Subject Matter Expert (SME's), which are defined by Webster's Dictionary (2011) as, "An individual recognized by his or her peers as an authority on a specific topic", this study acknowledged five additional primary variables that have potentially made an impact on entrapment reduction. For this study SME's consisted of; Superintendants, Captains, Fire Management Officers, Battalion Chiefs, Regional Fire Staff and NWCG/NIFC Specialists. Other variables were identified through discussion in an effort to rationalize and identify additional contributors to entrapment reduction; however, this study will briefly address the five that according to SME's had the largest perceived contribution according to their professional opinion. The identified variables to HF/L training are as follows:

1) The sustained departure from full perimeter control tactics on wildland fires- There is a growing number of fires that are not aggressively suppressed due to the natural resource benefit provided to a particular landscape. These fires often times require a reduced level of tactical engagement and reduced staffing. **Perceived benefit to entrapment reduction**- Exposure and risk is minimized on these fires because of less aggressive tactics.

2) Assignment Turndown Protocol- An accepted method of declining a task or assignment from a supervisor. Perceived benefit to entrapment reduction- Firefighters are empowered to make safer decisions without fear of reprimand, more hazardous assignments are being avoided.

3) Higher level of oversight in regards to granting qualifications, training course development and distribution- The development of a standardized procedural method to granting qualifications and training standards which encompasses a checks and balance system. Perceived benefit to entrapment reduction- The likelihood of firefighters being placed into positions above their ability is reduced.

4) Culture changes in the Wildland Fire Service- The overall perspective that the wildland fire service has improved its safety awareness, technical job skills, leadership and accountability. *Perceived benefit to entrapment reduction*- Culture change has created a more efficient safety conscious wildland fire workforce.

5) Faster more accurate weather forecasts- Through technology and concise processes, more accurate fire effecting weather forecasts are being relayed to on the ground fire resources in a timely manner. Perceived benefit to entrapment reduction- Safer and more efficient fireline decisions are being made because they are being based off of current and expected weather conditions.

Upon review of the above mentioned variables an observation was made that four of the five SME identified variables needed a human factor contribution to function and that some were more dependent on human factors than others. A matter then arises to the fact that the question specifically asked to identify other variables aside from human factors. The difficulty in doing so may suggest that human factors mitigations play an even larger role within the wildland fire culture and are implemented instinctively even when it isn't the primary focus. Additionally, the inability to quantify or place value on these identified variables made them unusable within the structure of this study.

A reduction in both fatal and non-fatal entrapments between the years of 2000 through 2009 would raise several questions in regards to what management efforts implemented during the same time period has had the greatest impact. There are continual efforts being made, aside from specific HF/L contributions, which are directly or indirectly related to a reduction in entrapment occurrence. Additional contributors to entrapment reduction may or may not have quantifiable but rather qualitative data to prove its case, but none the less need to be considered variables. HF/L training represents, in a larger context, the "culture shift" in wildland firefighting and there is no question that this culture shift has HF/L training as its flagship (Bob Loveless, personal communication, February, 2011)

The difficulty in validating HF/L effectiveness is the indeterminate nature of the question at hand as well as the imperfect state of the available information needed to make a valid judgment. Even with trends identified, it is difficult to predict or correct human nature. Clearly it is impossible to predict exactly when and where an accident may occur and under what circumstances, but through statistical analysis and high performing databases we can attempt to make a discovery of successes or deficiencies in intervention strategies in addition to high-risk periods and trends. In order to target optimal placement of intervening strategies (HF/L training), the discovery of high-risk periods or conditions needing attention during a typical firefighter's career can provide a starting point for a probabilistic and prescriptive based approach for HF/L implementation. It must be stressed that a reliable database system along with systematic assessments of trends would be crucial to the success of this methodology.

Among the perceived benefits to both the agencies and firefighting community, this approach has the potential to create a *prescriptive method* of positioning this critical training, supplemental to the current approach. Since comparable studies show that human error often times accounts for 70-85 percent of all accidents, and HF/L training is indirectly targeted to reduce these errors, optimal implementation directly before or during need or high-risk periods would seem to be the most effective and efficient method of supplemental training distribution in terms entrapment reduction.

Scope

This study is concerned with identifying a rate change in the probability of entrapments among the US wildland fire service per 1,000 person-hours exposed on the fireline per year. Analysis conducted between the years of 1994-2009 allows for comparisons six years pre- and ten years post-HF/L training deployment (HF/L was deployed in 1999-2000). Without quantifiable data on the rate changes of entrapments since intervening strategies were implemented, decision makers will be unable to continuously validate the effectiveness of training efforts in terms of entrapment reduction.

As a supplemental point of interest this study is concerned with the average positioning of the six HF/L courses during a wildland firefighter's career. A discovery of when these six HF/L courses are received by firefighters will allow for an assessment of how efficient the current system is at providing an approach for training that is needs-based, matching training availability to the quality and quantity of training needed.

The purpose of this analysis is to provide statistical information for the decision maker to use in continuously assessing the effectiveness and efficiency of the HF/L training program. The results obtained from this study reflect only a portion of the essential information that would be needed to generate an informed conclusion. This study should be considered a tool that may generate insight in an effort to support decision making. Effectiveness and relationships between intervening strategies and statistics are the primary focus of this study.

Decision Maker's Problem Statement

The Chair of the NWCG Leadership Sub-committee is uncertain about whether HF/L training has been effective in terms of reducing the probability of fatal and non-fatal entrapments by 20 percent or greater on wildland fires since implementation, additionally, there is uncertainty about how efficient the current training distribution method is in terms of providing critical training mitigations at the statistically verified positions in need or periods of high-risk during career points.

Management Goal

According to goal #64 of the TriData Study Phase III (1998), the implementation approach for training is as follows:

• To develop a needs-based strategy for training across agencies (i.e., matching training availability to the quality and quantity of training needed). Training programs need to be both effective and efficient.

Project Objective

This project will test the null hypothesis $\alpha \leq .05$, using generalized linear models, that Human Factors/Leadership training, implemented in 2000, has had little or no effect in reducing the probability of fatal and non-fatal entrapments among wildland firefighters against the alternative hypothesis that this training has been effective in reducing the entrapment probability of fatal and non-fatal entrapments. For this study the effectiveness of HF/L training is defined as a greater than or equal to 20 percent decrease in the probability of entrapment per 1,000 personhours exposed during the years of 2000-2009 compared to the years 1994-1999. As a supplemental point of interest, this project will analyze the point in a firefighter's career where HF/L training courses are typically being deployed, and if the current implementation method is providing training on a *prescriptive based* approach at critical times before or during the period where there is an elevated need.

Methods

This report presents a procedure for assessing the HF/L effectiveness and the efficiency in which training is currently being implemented to those who are regularly engaging in fire line activities. Through population sampling and observed historical variation the intent of this study was to examine the performance of HF/L training by analyzing two things,

- 1. Through regression modeling measure the effectiveness and relationship of the HF/L program since inception to entrapment probability reduction and quantify the level of effectiveness to a significance level of $\alpha \le .05$. This method is similar to medical studies where drugs effectiveness is tested against disease.
- 2. Assess when HF/L training is being given to firefighters throughout their career to see if it is being provided at the most opportune time relative to high-risk or critical career periods.

The existing National Interagency Fire Center (NIFC) infrastructure along with input from the Lessons Learned Center (LLC), US Fire Administration, NWCG Risk Management Databases and published literature was utilized for information needs. Information gathered facilitated the statistical and quantifiable analysis that would help identify trends and deficiencies related to human factors interventions. Microsoft Excel (2007) was used to produce descriptive and standalone statistics while The R Foundation for Statistical Computing (2011) was used for multiple regression calculations and residual plotting. Of particular interest for this study were the statistics related to fatal and non-fatal entrapments rates and training implementation.

HF/L Effectiveness-Data Collection:

Data was collected and compared six years before and ten years after HF/L training was introduced in order to determine if a \geq 20 percent reduction in entrapment probability/1,000 person-hours exposed has occurred since the implementation of the training in 2000. Person-Hours Exposed represents, the amount of time that firefighters spend on the fireline. More specifically it represents periods of time actively engaging in suppression activities or time spent exposed in a fireline situation where they may have potential to be involved in an entrapment situation during a typical shift. For this study HF/L training was effective if a \geq 20 percent reduction

in entrapment probability/1,000 person-hours exposed has occurred during the ten years post HF/L training.

National entrapment statistics were found on the NWCG's Safety and Health Working Team's annual report called a "Safety Gram" (http://www.nwcg.gov/branches/pre/rmc/safetygrams/sg-archive/safety-gram-archive.htm). The Safety Gram has tracked safety related data including entrapments both fatal and non-fatal since 1987. Entrapment rates were gathered from 16 years of data ranging from 1994-2009 to determine annual rates and means during the period of study.

National person-hour statistics for wildland firefighting was unavailable directly through NIFC infrastructure so a systematic and statistically valid sampling method of producing man-hour rates was developed. By using the National Situation Report (SIT Report) produced by NIFC as a foundational report person-hour rates were acquired. The SIT Report is a compilation of information that is provided through the country's 11 Geographic Area Coordinating Centers (GACC) relating to wildland fire activity and resource availability, see appendix C. According to NIFC intelligence personnel, it is estimated that 85-90 percent of the nation's wildland fire activity, related to resource commitment, is captured by the SIT Reports (Kari Boyd-Peak, personal communication, June, 2011).

Rates of entrapments per person-hours exposed provide decision makers with a quantifiable number that shows effectiveness in entrapment reduction since HF/L training efforts were implemented. Since person-hour statistics were untracked in any of the available databases, a systematic approach for developing person-hour statistics was created by using the following process:

Data Sampling and Processing:

- 1. Statistically process sample data and quantify the level of effectiveness. Methods and sample sizes operated under a significance level of $\alpha \le .05$.
- 2. This study investigates a population sample by developing a grouping of months that captures the nation's wildland fire season divided into 3 strata. The criterion for month selection was that they had to encompass the combined fire season across the country. Months were chosen by viewing, on average, when SIT Reports began showing activity or loosing activity on a national level.

By stratifying the population there is an ability to improve the quality of the random sampling process by accounting for trends in seasonal fire severity.

Selected: March, April, May, June, July, August, September, October, and November.

Strata Arrangement: Strata 1-[March-May] Strata 2-[June-Aug] Strata 3-[Sept-Nov]

3. By utilizing Raosoft online Sample Size Calculator

(http://www.raosoft.com/samplesize.html), at a significance level of $\alpha \le .05$ and with a confidence interval of 3.78 percent a population sample size of 600 was calculated from the study period's 5,520 total days. From each year within the 20 year study period a random sample of 30 days was selected to represent a sufficient sample size of that given year. Twenty years X 30 days per year equate to 600 sample days for the total study period. Ten days were randomly selected for each stratum to provide the total 30 day sample per year. A random sample generator was used to choose the individual 600 sample days. (http://www.random.org/integer-sets/).

Formula for determining an adequate stratified sample size:

$$nI,nII,nIII = \frac{N1}{N} *30 = Stratum Sample$$

 $nI,nII,nIII = \frac{92}{N} *30 = 10$
 276

4. For each of the 600 sample days that were chosen the corresponding SIT Report was pulled from the NIFC archive. It needs to be noted at this point it was discovered that SIT reports from 1990-1993 although available, were un-useable for this study's methodology due to a change in data reporting formats starting in 1994. As a result of unavailable data four hundred and eighty sample days were carried through the remainder of the study instead of the original six hundred days that were planned. Along with other information, the SIT Report provides total personnel committed for a fire on any given day nationwide. See appendix C for SIT Report fire requirements. The total personnel committed for each sample day was summed from the SIT Reports for all fires in the country for that year and divided by 30 (the amount of sample days for the year) to give the mean for person-days committed for the specified year. The mean person-days committed was then multiplied by 276, which was the total number of days between March 1 and November 30, to give the mean for total for person-days committed for the given year. To further refine the accuracy an assessment of on the ground personnel committed was needed. Through statistical analysis it was discovered that 68 percent of the total personnel committed on a fire were actually fireline resources (as opposed to fire camp or administration personnel). The total personnel committed were then multiplied by .68 to represent the total personnel (persondays) exposed on the fireline.

- 5. In order to convert person-days exposed on the fire line to person-hours exposed, SME's weighed in to provide a viable number of actual hours spent exposed on the fire line. The average fire line exposure time was determined to be 8.5 hours. To obtain person-hours exposed the annual total for personnel exposed from step 4 were multiplied by the 8.5 hour exposure mean.
- 6. By utilizing annual entrapment totals the rate of person-hours exposed per one entrapment is figured by dividing person-hours exposed by the total number of entrapments for the specified year.
- 7. Divide annual person-hours worked per 1 entrapment by 1,000 to obtain the probability of entrapments per 1,000 person-hours exposed. See appendix A and B.
- 8. Utilize the National Incident Qualification and Certification System (IQCS) data base to discover training rates and training "ramp up" periods. Regression modeling was used to see if there was a relationship between HF/L training and a reduction in entrapment rates.

Statistical Method:

The statistical method follows a regression model where the Y is a "probability" between 0 and 1 and the X variables are HF/L training, acres burned and fire occurrence on a national/federal level. Variables were identified as potentially good candidates to explain the variation in Y. For this study the selected explanatory variables were from the national level and were identified as follows:

1. Training/No Training 2. Number of Fires 3. Acres Burned

This approach is very common in medical studies where the probability/response variable (Y) of catching a disease (or dying) is based on whether the patient receives treatment/explanatory variable (X) as well as other factors such as age overall health and gender among others. Due to the fact that the response variable in this study is count data, it is best analyzed with what is called a *"generalized linear model"*. Because the response variable is counts, a link function is needed to make the residuals normally distributed.

This study modeled the probability of entrapment occurrence by the number of entrapments per 1,000 person-hours exposed. Simply put:

 $\frac{Entrap\ Count}{1000\ hrs\ exposure} = e^{f(\beta i x i)}$

When the response variable is a count or rate data, as this one is, one option is to use the poisson regression as a special case for the generalized linear model, whether it is characterized as a causal model or not. For the poisson, the mean and variance are equal. In certain cases it may be discovered that there is "over-dispersion" which implies that there is more variability around the fitted values than is consistent with a poisson formulation (Berk & McDonald. 2007). During circumstances of over-dispersion utilizing the "quasipoisson" or negative binomial distribution is viewed as an option to the Poisson. All three link functions (poisson, quasipoisson and negative binomial) were examined for best fit as a part of this projects modeling effort.

Through the process of developing and selecting the appropriate regression model the intent is to model the probability of entrapment occurrence. Variables and interactions were run through the model and removed as determined insignificant, following the principals of Occam's Razor which says the simplest model that is adequate is best. Once the simplest and most appropriate model is revealed an assessment of the coefficients and p-values will provide an indication of the significance and relationship between variables.

Plotting Residuals-

By plotting the residuals against the predicted values (on the link-scale) a measurement may be made on the deviance contributed from each observation. In essence, it is used to check the model's over all goodness of fit at each observation for the generalized linear model. If the model is adequate there should be no structure in the scatter plot.

Plotting Standardized Deviance Residuals-

By plotting the standardized deviance residuals on the generalized linear model we may assess whether or not the probabilities are "normally" distributed. This means that when they are plotted they follow an approximate straight line in regards to formation ensuring that the model is adequate.

HF/L Efficiency-supplemental point of interest:

The distribution method for HF/L training has been based on a logical promotional approach, courses are made available to firefighters prior to their ascent to the next leadership position or qualifying rank, the intent is to match training concepts to experience levels. The timing for the training is critical because the curriculum is designed so the training tools that are provided do not surpass the experience and skill of an advancing firefighter. Each course builds from the foundational concepts in the subordinate courses and takes an individual through an upward spiraling development/self-awareness process (Jim Cook, personal communication, May, 2011).

For this study, the concern is whether or not HF/L training is being efficiently positioned throughout an average firefighting career related to career periods of high-risk or need. Since comparable studies show that up to 85 percent of all accidents are due to human miscalculation, it appears that intervening strategies aimed at reducing the occurrence and consequences of the human element has potential to make a substantial impact on entrapment reduction.

Trends that show at what point HF/L courses are distributed during a career may provide decision makers with quantifiable data that allows them to determine the efficiency in which HF/L training efforts are being distributed related to a need. A method for developing a systematic approach for discovering efficiency was created by the following:

Data Sampling and Processing:

- Utilize the Incident Qualification and Certification System (IQCS) to validate the years during a firefighters career that the six "L" series courses are being deployed: L-180, L-280, L-380, L-381, L-480 and L-580. The IQCS system is a data base that tracks training and currency related qualifications for Interagency Wildland Firefighters. Interagency Wildland Firefighting community is represented by the US Forest Service, Bureau of Land Management, National Park Service, Fish and Wildlife Service and Bureau of Indian Affairs.
- Identify the national average time gaps between "L" series courses. A query was
 performed in the national IQCS database to search all firefighters and the dates when they
 took "L" series courses. Processing this data provides a current average time gap (years)
 trend between when each course was taken.
- 3. By analyzing entrapment investigation reports and identifying trends during careers where the probability of an entrapment is elevated, the potential to identify a need, positioned on a career timeline based off of a high-risk of entrapment, may provide a more efficient training distribution method.

Assumptions

This study was completed under the following assumptions:

- 1. By investing in HF/L training, the wildland fire service has attempted to develop error resilience within the wildland fire culture, effectively leading to an expected outcome that would produce a reduction in the likelihood of entrapments and or fatalities.
- 2. Although HF/L training courses are officially titled "Leadership courses" this study operates under the assumption that human factors encompass large portions of leadership choices.
- SIT Reports were used to derive trends relating to national man-hours exposed on wildland fires. From discussions with NIFC intelligence personnel it is assumed that approximately 85 to 90 percent of the nation's wildland fire activity, related to resource commitment, is accounted for on the National Situation Report.
- 4. From results of statistical analysis it is assumed that 68 percent of the "Total Personnel Committed" on a fire is made up of engine and crew personnel and that this percentage is a constant across the entire study period ranging from 1994-2009.
- 5. Through surveys with fire line SME's including: Hotshot superintendants, Hotshot Captains, Engine Captains, Smokejumpers, Assistant Fire Management Officers, Fire Management Officers, and Regional Fire Staff it is assumed that on average firefighters spend 8.5 hours exposed to direct fire line activities. It is also assumed that exposure rates were uniformed throughout the study period.
- 6. By analyzing the 20 year history captured in the National Sit Report archives, trends show that consistent fire reporting/activity occurs between the months of March through November. It was assumed that the national fire season could be reasonably defined as the months between March 1st and November 30th.
- 7. This study assumes that the quality and consistency of the data is continuous across the 20 year study period. In recent years agencies have become better at reporting, acquiring and processing data associated with wildland fire accidents. This has the potential to skew data in that if more details are being collected, it could look like entrapments are increasing when in reality agencies are just doing a better job in

collecting and reporting these incidents (Britt Rosso, personal communication, August 2011).

8. There are multiple variables potentially associated with rate changes in entrapment probabilities; however, this study assumes that HF/L training, fire occurrence and acres burned have had the greatest potential to act as a primary contributor in entrapment rate changes.

<u>Basic Statistics:</u>

Initial results from basic national and federal statistic are shown in Table 1. Through comparative analysis it is revealed that there has been a decrease in entrapment counts and entrapment probability rates when comparing pre and post HF/L training eras. Of particular interest, national entrapment probability rates decreased by 68 percent while the Federal entrapment probability rate decreased by 69 percent. These percentage rates indicate the probability of entrapment occurrence per 1,000 person-hours exposed for each year of the study. Trends for the person-hours exposed category shows a nearly two-fold increase in exposure hours when comparing pre and post training eras.

TABLE 1. Trend Analysis for exposure hours, entrapment counts and entrapment probabilities for the years of
1994-2009.

Year	Person- Hours	Number of Entrapments	National Entrapment Probability (per 1,000	Number of Entrapments	Federal Entrapment Probability (per 1,000
	Exposed	(Nationally)	Hours Exposed)	(Federal)	Hours Exposed)
1994	7,852,075	117	1.490%	113	1.439%
1995	1,048,631	9	0.858%	2	0.190%
1996	3,325,627	200	6.013%	105	3.157%
1997	660,552	29	4.390%	23	3.482%
1998	2,078,065	20	0.962%	0	0.000%
1999	3,611,873	44	1.135%	24	0.664%
6-yr. Total	18,576,823	419		267	
6-yr. Mean	3,096,137	69.833	2.475%	44.5	1.489%
2000	4,375,959	79	1.805%	35	0.799%
2001	4,305,076	32	0.743%	29	0.673%
2002	8,195,538	59	0.719%	27	0.329%
2003	8,616,958	6	0.069%	6	0.069%
2004	2,499,538	43	1.720%	34	1.360%
2005	6,734,794	14	0.207%	9	0.133%
2006	5,745,295	54	0.939%	34	0.591%
2007	8,407,232	53	0.630%	18	0.214%
2008	6,872,626	17	0.247%	4	0.058%
2009	3,671,643	34	0.926%	13	0.354%
10-yr. Total	59,424,659	391		209	
10-yr. Mean	5,942,466	39.1	0.801%	20.9	0.458%
Entrapment R	ate Change Com	paring 1994-1999 to			
2000-2009		Decrease 68%		Decrease 69%	
16-yr. Total	78,001,482	810		476	
16-yr. Mean	39,000,741	405	1.638%	25.05	0.973%

Figure 3 provides graphical comparisons and projected trend lines for entrapment probabilities within the study period. It is illustrated that since 1994 there has been a steady decrease in the probability of entrapment per 1,000 person-hours exposed.

Figure 4 illustrates trends relating to person-hours exposed revealing that since 1994 there has been a constant increase in exposure hours for the nation's wildland fire fighters. The trend line shows that for every four years that passes, exposure hours have been increasing by approximately 1 million hours.

Person-Hours Exposed Nationally

Regression Modeling:

For this study the negative binomial was appropriate as a link function as indicated from the large variability in the values below.

National Results: variance(Entrapment Nationally)/mean(Entrapment Nationally) 47.32543 Federal Results: variance(Entrapment Federally)/mean(Entrapment Federally) 36.91877

In an effort to rule out and or assess all possible effects from the explanatory variables on the response variable (Y), numerous interactions were run through the regression model using the project's selected variables. If there were existing interactions it would indicate that effect on the response variable for a given X depends on the level of another X. All interaction terms were tried and were highly insignificant (p-values larger than 0.21) and therefore were removed from consideration. Table 2 displays the insignificant and significant explanatory variables for both national and federal categories.

TABLE 2. National and federal values for significant and insignificant explanatory variables that were run through regression modeling.

Explanatory Variable	Coefficient Estimate	Standard Error	p-value
Intercept	1.34310	0.49689	0.00687
Training	-1.35818	0.51105	0.000787
Number of Fires	0.05307	0.04462	0.23426
Acres Burned	0.11175	0.05445	0.04014

Insignificant National Model

Insignificant Federal Model

Explanatory Variable	Coefficient Estimate	Standard Error	p-value
Intercept	0.55251	0.64413	0.3910
Training	-1.16990	0.66052	0.0765
Number of Fires	0.03810	0.05750	0.5076
Acres Burned	0.13456	0.07061	0.0567

Significant National Model - Final Model

Explanatory Variable	Coefficient Estimate	Standard Error	p-value
Intercept	1.87975	0.40340	3.17e-06
Training	-1.60114	0.47726	0.000794
Acres Burned	0.12271	0.05052	0.015134

Explanatory Variable	Coefficient Estimate	Standard Error	p-value
Intercept	0.9640	0.5142	0.0608
Training	-1.3127	0.6003	0.0287
Acres Burned	0.01365	0.0637	0.0327

Significant Federal Mode I- Final Model

The final models were created through a process of removing insignificant terms; those which were found inconsequential were omitted from inclusion. The insignificant models above are the full models with all potential variables in the equations. The "number of fires" variable was identified as insignificant and removed to arrive at the significant final models.

By plotting residuals from the national results an evaluation was made as to the model fit against the predicted values. The left panel in Figure 5 illustrates an inadequate model due to some structure in the scatter plot. The cluster of residuals in the lower right corner indicates variation that was unaccounted for. This shows that there are still some explanatory variables that weren't collected. By plotting the standardized deviance residuals in the right panel an assessment is made as to whether or not the residuals are normally distributed. The national standardized deviance residuals follow an approximate straight line in regards to formation indicating that the negative binomial link function is in fact adequate.

This study was primarily interested in the coefficient for the "Training" factor. This factor was coded as 0 or 1 with 1 being the 2000-2009 training era. This value is a -1.60114 and is significant (p=0.000794). Additionally, $e^{-1.60114}$ is called the "rate ratio". Calculated out this value is .202 which means the annual total for national entrapments for 2000-2009 is only 20 percent of

pre 2000 levels for any fixed or constant level of exposure and acres burned. Simply put, through modeling the probability of entrapment occurrence these results show that there was an 80 percent decrease in annual total entrapments during the training era compared to the 1994-1999 non training era. The training factor was significant after accounting for the variation in exposure hours and acres burned.

Residual plotting from the federal results illustrates similar findings to the national plots. The left panel in Figure 6 reveals a lack of structure in the federal plotted residuals against predicted values indicating an adequate model fit. Standardized deviance residuals are plotted in the right panel and reveal that they are normally distributed. The approximate straight lined structure indicates that the negative binomial link function is adequate.

For the federal results, again the "Training" factor is one of interest. This coefficient value was -1.3127 and is significant (p=0.0287). The "rate ratio" ($e^{-1.33127}$) calculated out is 0.2691 meaning that the training era has only about 27 percent of the federal annual entrapments compared to 1994-1999 for constant levels of exposure and acres burned. Clearly stated, the results show that there was a 73 percent decrease in annual total entrapments during the training era compared to the non training era of 1994-1999 after accounting for the variation in exposure hours and acres burned.

Figure 7 illustrates the "ramping up" of HF/L training in recent years. For this study's time period cut off of 2009, 40 percent of the nation's Federal Wildland Firefighters have had at least one "L" series course while, as a comparison, US forest Service Wildland Firefighters were at 48 percent. The most recent data (2011) revealed that just over 50 percent of the nation's Federal Wildland Firefighters have had at least one "L" series course and just as a comparison, the US Forest Service has a slightly higher percentage at 63 percent. See appendix D for additional graphs and IQCS data query relating to "L" series "ramp up" trends.

As a secondary point of interest this study analyzed the current "L" series training time line since 2000. Figure 8 shows the mean time period that occurs between each "L" series course. The national time line, as provided by the IQCS database, reveals the training regimen that is currently in place provides all six "L" series courses prior to a firefighters 12th year. Region 5 data was provided as a comparison.

	L-180 to L-280	L-280 to L-380	L-380 to L-381	L-381 to L-480	L-480 to L-580	Mean time to complete 6 L-courses
Region 5 Mean Period Between L- courses	2.20 years	1.09 years	3.14 years	3.00 years	1.58 years	11.01 years
(n=5,340)	(n=2,699)	(n=2,186)	(n=379)	(n=67)	(n=9)	
Federal (all agencies) Mean Period	1.96 years	1.67 years	2.81 years	2.96 years	2.12 years	11.52 years
Between L- courses (n=29,450)	(n=16,135)	(n=8,296)	(n=3,736)	(n=980)	(n=303)	

Discussion & Recommendations

When strategies are implemented to mitigate an unwanted condition there needs to be some way to measure the success of the strategy. The primary purpose of this study was to develop a method to measure the effectiveness of HF/L training. The secondary purpose was to analyze potential efficiency possibilities in regards to training distribution. To employ a mitigation action that is in-effective is a waste of time, money and resources, therefore, consistent monitoring needs to be done to ensure that the desired results and or objectives are in fact being realized and to assess to what degree they are proving successful. Once the effectiveness of a strategy has been established it would be advantageous to then determine the efficiency in which it is being implemented in an effort to maximize benefits.

This study utilized a generalized linear model in an attempt to analyze the effectiveness of HF/L training. By modeling the entrapment counts (Y) as number of events observed from exposure, the results from the parameters that were outlined, rejected the null hypothesis $\alpha = .05$ that Human Factors/Leadership training, implemented in 2000, has not been effective at reducing the probability of fatal and non-fatal entrapments among wildland firefighters by greater than or equal to 20 percent. Therefore the alternative hypothesis that Human Factors/Leadership training, since implemented in 2000, has been effective in reducing the probability of fatal and non-fatal entrapments among wildland firefighters by greater than or entrapments among wildland firefighters was affirmed.

This study validates that HF/L training is not just intrinsically valuable to firefighter; rather, it is a confirmed quantifiable contributor to a reduction in the probability of entrapments since it was implemented in 2000. Entrapment probability rates decreased 68 percent nationally and 69 percent federally as observed from the basic statistics. The regression modeling revealed significant decrease in the modeled probability of entrapment occurrence during the training era of 2000-2009 as compared to 1994-1999 (national=80 percent, federal=73 percent). Among the analyzed variables the model showed with significance that entrapment rates for both national and federal groups were better estimated by the increase of the "training" variable. With this knowledge brought to light, it is recommended that HF/L training continue to be implemented and improved upon in an effort to further reduce the fatality rates related to entrapments. Supplementary improvements would be valuable in the form of more efficient/prescriptive deployment strategies. Although an efficiency model was not the primary focus of this study it is discussed as an example to initiate further research.

Entrapment Rates & Training-Effectiveness:

This project's analysis shows that there has been a significant decrease in entrapment probabilities among National Wildland Firefighters and Federal specific. Analysis appears to show that the presence of HF/L training has had an effect on reducing wildland firefighter entrapment probabilities. Although HF/L training was identified in this project as a significant variable it needs to be made clear that it is not the only variable responsible for the shift in entrapment reductions. Further analysis, supplemental to this study, should be preformed over a longer time period and with additional variables to assess relationships between training and entrapment reductions.

There is a question as to whether HF/L training has potential to influence the national fire culture as a whole. One explanation may lie in the fact that both Federal and National entrapment probabilities decreased in the post training era. Although not all of the nation's wildland firefighters receive regular doses of HF/L training, the results of this study indicates that the mandatory federal HF/L training regiment has had an effect on the national entrapment rate as a whole. Since the majority of the nation's wildland fire forces are represented by the NWCG it may be reasonable to say that the culture change endured by the NWCG's agencies, since HF/L training implementation, has produced wide spread benefits and entrapment reductions to cooperating wildfire resources. Such resources often do not have mandated HF/L training regiments, and the benefit may come from the fact that wildland fire incidents are almost always interagency endeavors. A more in depth analysis is recommended to validate this assumption.

Training Distribution-Efficiency:

As a supplemental point of interest, queries run through the IQCS data base provide some clarity to the actual current Federal "L" series training regimen. Figure 8 showed the mean timeframes between each "L" series course. According to the national trend, during a federal firefighters career completion of "L" series curriculum (six courses) will have been accomplished in 11.52 years. With this knowledge an assessment can be made as to whether or not this is the intended timeframe the NWCG Leadership Sub-committee had in mind for training deployment. Relating to a typical 30 year federal firefighting career it must be noted that the current distribution timeline provides large amounts of HF/L training up to about year 12, then, for the next 18 years HF/L specific training would then be absent. This too needs to be evaluated for desirability by the Leadership Sub-committee. As an observation from wildland fire SME's, higher qualifications and positions are typically attained around or after year 12 which leads to more critical decision making responsibility. Additionally, a study of fatal/near-fatal wildland fire accidents revealed that accident frequencies increase within years 10-15 (Dahl et al. 1980). If an absence of HF/L training is satisfactory during latter 18 years of a career then the current regimen should go unchanged, however, it seems that subsequent to year 12 is where the critical HF/L training need is,

prescriptive supplemental HF/L training would be beneficial throughout the latter half of a career as well.

Prescriptive Training Distribution:

In order to develop a prescriptive method for training deployment it must first be agreeable that HF/L training is effective at minimizing accident probabilities. Having an effective mitigation strategy would provide a useful method for addressing critical issues or high-risk periods. This study has provided current training regiments (timelines, Figure 8) which represent half of the required data need to implement a prescriptive training program. The missing half of the data is an identification of critical need or high-risk periods during a firefighting career. Through data driven analysis the wildland fire service needs to identify career points where proven mitigation strategies may be effective at reducing an unwanted trend.

Hypothetical example-

- Identified Trend/Critical Need Period- Through federal accident database analysis trends show that between the years of 12-15 module leaders are more likely to be involved in an entrapment situation as a result of human factors issues during downhill line construction or structure protection.
- **Prescriptive Mitigation** A prescriptive training program would provide targeted training for module leaders between the years of 10-15 of their career relating to effective human factors strategies for developing optimal downhill line construction or structure protection situations.

Ideally, critical trends needing attention would be pre-identified along the entire career timeline of the wildland firefighter and would branch off in to different career paths which would trigger a position specific training regimen, see Figure 9 for hypothetical trend discoveries. Prescriptive mitigations could then be implemented as targeted. FIGURE 8. Example of hypothetical prescriptive training placement based off of identified trends/needs with in specific fire line positions.

Note: * -Indicates critical need periods where prescriptive training can be implemented.

Concluding Thoughts:

Difficulties in validating this study come from questions dealing with the inability to quantify, measure and identify the entire set of variables that may have an effect on entrapment rates. Additionally, difficulty came from a realization that there was occasionally missing or inconsistent data due to changes in data collection methods throughout the study period and differences in databases. Because there was a lack of needed data in the databases, a process had to be created to develop the project critical statistic of "Person-Hours Exposed". Ideally, these statistics would already be in the data base and factual rather than being created by sampling methods. Further efforts made to account for additional variables and inconsistencies in data would be recommended by doing the following:

- Develop a more comprehensive database specifically dedicated to on the ground fireline human factors analysis. Assess the potential use of the Human Factors Analysis and Classification System (HFACS), a process and database developed by Shappell & Wiegmann (2000), as a framework that provides investigators and analysts with a comprehensive, user friendly tool for identifying, classifying and compiling human causes in accidents. HFACS is currently been employed by the U.S. Navy, Marine Corps, Army, Air Force, and Coast Guard for use in aviation accident investigations. HFACS databases can be reliably analyzed to identify trends from which prescriptively implemented human factors mitigations can be applied to specific data-driven objectives.
- Through HFACS utilization identify priority/high-risk periods or positions within a wildland firefighting career. Develop and implement prescribed training in accordance to trends.

- Assess current training timelines and distribution methods to ensure the right courses are being developed and provided in accordance to goal #64 of the TriData Study (1998). Training should be delivered on a needs-based strategy across agencies, matching training availability to the quality and quantity of training needed. Training programs need to be both effective and efficient.
- Trainings need to have clear objectives related to both contents and target audiences. Objectives need to be regularly assessed for consistency ensuring that they are producing the desired results.

Research has shown that in most cases, the post-accident databases typically are not conducive at providing a comprehensive user friendly tool for identifying and classifying the human causes of accidents. In order to objectively monitor and make judgments on training effectiveness, efficiency and trend occurrence, it is highly critical that specific detailed databases are implemented and regularly assessed. The following questions must be asked:

- Will the database eventually lend its self to focused and specific scientific analysis?
- How frequently and systematically is this data analyzed to look for possible problem areas or trends?
- Who provides the expertise to conduct the investigation and what makes them an expert in human factors?
- Who provides the expertise to conduct such analysis?

Organizations must seek out safety critical information rather than waiting for opportunities to analyze adverse events. An organization safety culture is a result of human factors/leadership awareness. Safety is a result of strong leadership and the awareness of the potential human contributions to accidents.

Even with increasing exposure hours and rising complexities, according to this study's results, the wildland fire service has managed to create a safer work environment in terms of reducing the probability of fireline entrapments. Difficulties in validating this study come from questions dealing with the inability to quantify, measure and identify the entire set of variables that may have an effect on entrapment rates. Further analysis is suggested in this realm. However, we must also look at the largest efforts or contributions that were made in recent years up to this point relating to the federal and national fire culture, this is where the development of HF/L mitigations trumps any other fireline specific training modification that has been made thus far.

Literature Cited

Army Research Laboratories, Booher, H. 1997. Human Factors Intergration: Cost and Performance Benefits on Army Systems. ARL-CR-341. Aberdeen Proving Grounds, MD. 46 p.

Berk, R. McDonald, J. 2007. Overdispersion and Poisson Regression: Ensemble methods for Data Analysis in the Behavioral, Social and Economical Sciences. University of Pennsylvania. SES-0437169. National Science Foundation. 1-2 P.

Dahl, D. and Smith, A. 1980. Study of fatal and Near-fatal Fire accidents. Preliminary report of Task Force. 18 p.

DOI/USDA. 2010. Report to the Congress, Wildland Firefighter Safety Report, CY 2010 Report. 28 p.

Duffy, B. Romney, and Saull, W. John. 2004. The Probability and Management of Human Error. 12th International Conference on Nuclear Engineering, Virginia, USA. 1-2 p.

Economic Glossary. 2011. Available online at <u>http://glossary.econguru.com/</u>; accessed August, 2011.

Federal Aviation Administration, System Safety Handbook. 2000. Chapter 17: Human Factors Principals and Practices. 17-1 & 17-2 p.

Keeley, J. E., Fotheringham, C.J., Franklin, J., and Moritz, M. 2008. The 2007 Southern California Wildfires: Lessons in Complexity. *Journal of Forestry*, September 2009. 287-296 p.

Haahr, Mads. 1998-2011. Random Sample Generator. Available online at http://www.random.org/integer-sets/; accessed June, 2011.

Merriam-Webster. 2011. Webster's dictionary. Available online at <u>http://www.merriam-webster.com/</u>; accessed July, 2011.

Microsoft Corporation 2010. Microsoft Office Excel. Windows 7, release 14.0. Microsoft Corp., Redmond, Washington.

Narinder, T. 2002. Human Factors in Aircraft Accidents: A Holistic Approach to Intervention Strategies. University of Illinois, Aviation Human Factors Division, Savoy Illinois.

National Wilfire Coordinating Group (NWCG), Program Management Unit. 2011. Glossary of Wildland Fire Terminology. PMS-205. National Wilfire Coordinating Group, Boise, ID.

National Wilfire Coordinating Group (NWCG), Safety and Health working Team. 2000. Human Factors on the Fire line, L-180, Student Guide. NFES-2651. National Wilfire Coordinating Group, Boise, ID.

National Wildfire Coordinating Group (NWCG), Safety and Health working Team. 2007. Wildland Firefighting Fatalities in the United States: 1990-2006. PMS-841. National Wildfire Coordinating Group, Boise, ID. 13 p.

National Wildfire Coordinating Group (NWCG), Task Force. 1980. Study of Fatal/Near-Fatal Wildland Fire Accidents. National Wildfire Coordinating Group, Boise, ID. 15 p.

O'Hare, D., Wiggins, M., Batt, R. and Morrison, D. 1994. Cognitive failure analysis for aircraft accident investigation. *Ergonomics*, *37*. 1855-1869.

Putnam, T. 1996 The Collapse of Decisionmaking and Organizational Structure on Storm King Mountain. USDA Forest Service, Missoula Technology and Development Center.

Shappell S.A. and Wiegmann, D.A. (*date unknown*). Human Error Perspectives in Aviation, Aviation Human Factors Division. University of Illinois, Urbana-Champaign. *International Journal of Aviation Psychology*, 11(4), 341-357 p.

Shappell S.A. and Wiegmann, D.A. 1997. Human Factor Analysis of Post Accidental Data: Applying Theoretical Taxonomies of Human Error. University Of North Florida, Jacksonville, FL. Urbana-Champaign. *International Journal of Aviation Psychology*. 7(1), 67-81 p.

Shappell S.A. and Wiegmann, D.A. (2000). The Human Factors Analysis and Classification System-HFACS. University of Illinois, Urbana-Champaign. U.S. Department of Transportation, Federal Aviation Administration. DOT/FAA/AM-00/7. 13 p.

Safety Gram Archive 2011. NWCG, Risk Management. Available online at http://www.nwcg.gov/branches/pre/rmc/safety-grams/sg-archive/safety-gram-archive.htm; accessed July, 2011.

The R Foundation for Statistical Computing 2011. R version 2.14.1., Vienna, Austrailia. Available on line at http://www.r-project.org/foundation/.

USDA Forest Service, Ted Putnam (Project Leader). 1995. Findings from the Wildland Firefighters Human Factors Workshop. USDA, Forest Service, Technology and Development Program Missoula, Montana. 9551-2855-MTDC. 3 p.

U.S. Department of Transportation, National Highway Traffic Safety Administration. 2008. National Motor Vehicle Crash Causation Survey, Report to Congress. U.S. Department of Transportation, National Technical Information Services, Springfield, Virginia. 25 p.

Weik, E. Karl. 1995 South Canyon Revisited: Lessons from High Reliability Organizations. University of Michigan, Ann Arbor, MI 48109-1234: *Wildfire Journal* 1996: 56 p.

WILDLAND FIREFIGHTER SAFETY AWARENESS STUDY. 1996. Phase I-Identifying the organizational, Culture, Leadership, Human Factors and other issues impacting firefighter safety, Prepared by: TriData Corporation, 1000 Wilson Boulevard Arlington, Virginia 22209. BLM Contract # 1422-N-651-C5-3070. vii p.

WILDLAND FIREFIGHTER SAFETY AWARENESS STUDY. 1998. Phase III-Implementing Cultural Changes for Safety, Prepared by: TriData Corporation, 1000 Wilson Boulevard Arlington, Virginia 22209. Ch. 5. 25-27 p.

Yacavone, D. 1993. Mishaps trends and cause factors in naval aviation: a review of Naval Safety Center data, 1986-90. *Aviation, Space and Environmental Medicine, 64*. 392-395 p.

Referenced Individuals

- Boyd-Peak, Kari. 2011. External Affairs-Intelligence/NIFC.
- Cook, Jim. 2011. Training Projects Coordinator, U.S. Forest Service / NIFC.
- Loveless, Bob, PhD. 2011. Washington Institute. Technical Fire Management Faculty, Statistician.
- Sutton, Larry. 2011. Fire OPS Risk Management, Fire/Aviation Safety, US Forest Service / NIFC.

Appendices

Appendix A:

2009	2008		2007		
Random Sample	Total Personnel Committed	Random Sample	Total Personnel Committed	Random Sample	Total Personnel Committed
Days	Nationally	Days	Nationally	Days	Nationally
3-Apr	458	14-iviar	855	9-iviar	421
22-Apr	503	21-IVIdI	1159	10-IVIdi	1135
27-Apr	1248	28-iviar	1159	28-iviar	372
28-Apr	1434	4-Apr	741	30-Mar	37
1-May	910	11-Apr	651	2-Apr	15
2-May	908	24-Apr	1869	5-Apr	50
6-May	951	25-Apr	1468	10-Apr	104
12-May	3842	30-Apr	2135	4-May	1923
19-May	530	8-May	1626	13-May	3721
20-May	136	29-May	291	20-May	4081
Strata Average	1092	Strata Average	1195.4	Strata Average	1185.9
17-Jun	612	2-Jun	154	23-Jun	1694
28-Jun	68	4-Jun	458	1-Jul	4545
29-Jun	275	16-Jun	6552	20-Jul	15841
3-Jul	590	19-Jun	5511	23-Jul	13192
10-Jul	2528	30-Jun	22689	26-Jul	12018
13-Jul	3842	7-Jul	20819	30-Jul	10837
20-Jul	3483	24-Jul	14649	1-Aug	10908
22-Jul	4224	1-Aug	14432	6-Aug	14377
4-Aug	9035	16-Aug	6791	22-Aug	17148
29-Aug	7121	29-Aug	5563	23-Aug	15887
Strata Average	3177.8	Strata Average	9761.8	Strata Average	11644.7
2-Sep	11317	9-Sep	2482	11-Sep	9722
13-Sep	2832	20-Sep	4582	18-Sep	6857
14-Sen	1759	4-Oct	2829	28-Sen	16
23-Sen	4432	5-Oct	2025	5-Oct	36
23 Sep 27-Sen	4648	6-Oct	1701	12-Oct	333
27.50p	1018	12-Oct	307	12 Oct	533
25 Oct	1045	12 Oct	2653	22-Oct	/871
13-Nov	1045	21-Oct	646	22-0tt	6283
20 Nov	109	7 Nov	261	25-000 0 Nov	0205
20-NOV	108	7-NOV	201	9-INOV	320
Churche Aussian	2024.0	14-1100	1904	Z3-INUV	319
Strata Average	2034.9	Strata Average	1967.1	Strata Average	2979.0
Sample Total	69,047	Sample Total	129,243	Sample Total	158,102
Mean ner/day	2 302	Mean ner/day	4 308	Mean ner/day	5 270
	2,302		1,500		5,270
09 Year Total Personnel	635,232	08 Year Total Personnel	1,189,036	07 Year Total Personnel	1,454,538
09 Year Total Handcrew/engine Personnel	431,958	08 Year Total Handcrew/engine Personnel	808,544	07 Year Total Handcrew/engine Personnel	989,086
2009 Man Hours Exposed	3,671,643	2008 Man Hours Exposed	6,872,626	2007 Man Hours Exposed	8,407,232
2009 Entrapments Fatal & Non-Fatal	34	2008 Entrapments Fatal & Non-Fatal	17	2007 Entrapments Fatal & Non-Fatal	53
Rate of Entrapment per exposure hours worked	107,990	Rate of Entrapment per exposure hours worked	404,272	Rate of Entrapment per exposure hours worked	158,627
Entranment		Entranment	,	Entranment	
Probability	0.009260159	Probability	0.002473582	Probability	0.006304096

20	06	2	005	2004			
Random Sample Davs	Total Personnel Committed Nationally	Random Sample Davs	Total Personnel Committed Nationally	Random Sample Davs	Total Personnel Committed Nationally		
3-Mar	1528	11-Mar	106	12-Mar	356		
12-Mar	472	18-Mar	685	19-Mar	176		
20-Mar	588	25-Mar	129	7-Apr	773		
21-Mar	555	1-Apr	178	8-Apr	471		
30-Mar	789	8-Apr	572	9-Apr	296		
21-Apr	632	15-Apr	342	1-Mav	307		
29-Anr	334	22-Apr	381	6-May	4341		
6-May	805	1-May	119	7-May	3451		
12-May	573	13-May	308	9-May	1135		
28-May	675	17-May	608	11-May	350		
Strata Average	690.1	Strata Average	342.8	Strata Average	1165.6		
1-lun	972	25-lun	6033	6-lun	1190		
1-Jun 6-Jun	350	23-5011 A_1ul	5589	8-lun	1100		
17-lun	355		55308	13-Jun	1002		
27-Juli 9 Jul	2625	7-Jul 12 Jul	2211	13-Jun	1580		
0-Jul 15-Jul	2033	15-Jul 16-Jul	3677	17-Jun 19-Jun	2254		
10-Jul	7106	10-Jul	5179	15-Juli 26 Jun	2254		
22-Jul 7 Aug	1217	J-Aug 7 Aug	J178 4572	20-Juli 20. Jun	2505		
7-Aug	1317	12 Aug	4575	29-Juli 2 Jul	3505		
20 Aug	14007	12-Aug	10581	2-Jul	4028		
20-Aug	12475	15-Aug 27 Aug	9905	19-Jul 25 Aug	9220		
Strata Average	6671 Q	Strata Avorago	11007 2	Strata Average	4302 2041 7		
Strata Average	12462	Ju ata Average	11007.3	Suata Average	1077		
5-sep	13403	10-Sep	4548	2-sep	1977		
7-3ep	14560	15-5ep	1445	15-5ep	1156		
3-Oct	3105	27-Sep	269	16-Sep	961		
18-Uct	92	2-Oct	4235	21-Sep	68		
25-0tt	0	6-001	200	I-OCI	70		
25-0ct	0	16-Oct	38	9-06	760		
29-ULI 10 Nov	2808	19-001	11	5-INUV	8		
10-NOV	501	25-001 19 Nov	10	12-INOV	0		
17-INOV	51	18-NOV	185	19-NOV	20		
Z4-INOV	163	25-INOV	831	26-INOV	0		
Strata Average	3442.3	Strata Average	1315	Strata Average	493.2		
Sample Total	108,043	Sample Total	126,651	Sample Total	47,005		
Mean per/day	3,601	Mean per/day	4,222	Mean per/day	1,567		
06 Year Total		05 Year Total		04 Year Total			
Personnel	993,996	Personnel	1,165,189	Personnel	432,446		
06 Year Total Handcrew/engine Personnel	675,917	05 Year Total Handcrew/engine Personnel	792,329	04 Year Total Handcrew/engine Personnel	294,063		
2006 Man Hours Exposed	5,745,295	2005 Man Hours Exposed	6,734,794	2004 Man Hours Exposed	2,499,538		
2006 Entrapments Fatal & Non-Fatal	54	2005 Entrapments Fatal & Non-Fatal	14	2004 Entrapments Fatal & Non-Fatal	43		
Rate of Entrapment per exposure hours worked	106,394	Rate of Entrapment per exposure hours worked	481,057	Rate of Entrapment per exposure hours worked	58,129		
Entrapment		Entrapment		Entrapment			
Probability	0.009398996	Probability	0.002078757	Probability	0.01720318		

20	003	2	002	2	2001			
Random Sample	Total Personnel Committed	Random Sample	Total Personnel Committed	Random Sample	Total Personnel Committed			
Days	Nationally	Days	Nationally	Days	Nationally			
0-IVIdi 21 Mar	0	ö-IVIdí 15 Mar	394	2-IVIdI	1/4			
21-IVIdI 24 Mar	55	15-IVIdi 22 Mar	147	25-IVIdI 6 Apr	225			
24-ividi 2 Apr	35	22-War	133	0-Apr	210			
2-Apr	70	29-IVIdi 6 Apr	04 607	15-Api 20 Apr	510			
21-Api 28 Apr	52	0-Api 12 Apr	007	20-Api 24 Apr	001			
20-Api	53	12-Api 25 Apr	415	24-Api 26 Apr	470			
4-ividy 8 May	44	25-Api 20 Apr	000	20-Apr	/20			
22 May	109	2 <i>5</i> -Api 9 May	1920	19 May	405			
23-IVIdy 24-May	198	9-ividy 27-May	1829	10-1VIdy 28-May	074			
Strata Average	77 4	Strata Average	789.4	Strata Average	482.9			
A-lun	611	14-lun	9736	15-lun	1550			
-4-Jun 26-lun	3695	20-lun	10840	19-Jun 18-Jun	2404			
20 Jun 29-lun	3909	20 Jun 29-lun	12069	10 Jul	1608			
6-lul	3945	20 Jul	11//0	2-Jul	1387			
0-Jul 12-Jul	6882	30-Jul	18575	9-Jul	1898			
12 Jul	6445	4-Aug	15105	24-Jul	1308			
20-lul	12638	4-Aug 7-Διισ	13961	24-Jul 27-Jul	3397			
20-Jul	13788	15-Aug	13501	27-Jui 3-Διισ	5012			
25-Jui Λ-Λιισ	7603	23-Aug	12040	10-Aug	5/02			
4-Aug 12-Aug	8699	23-Aug 28-Aug	10004	24-Aug	1992			
Strata Average	6780 5	Strata Average	13255.6	Strata Average	4407.2			
1 Son	16177		10225		9207			
1-Sep	101/7	20 Sop	2501	2-3ep	9207			
5-5ep	13043	S0-Sep	2301	10-Sep	7928			
0.Sop	15044	0-000	1	14-Sep	3134			
9-Sep	10231	20-001	411	25-Sep	4730			
10-5ep	0577	1 Nov	0	29-3ep	2708			
15-3ep	0327	1-INOV 8 Nov	52	10-000 21 Oct	50			
25-Sep Oct	None Chosen	15-Nov	86	21-0ct	1356			
4 Nov	AVER CHUSEN	22 Nov	24	27-000 2 Nov	202			
9-Nov	13	22-Nov	370	2-Nov 3-Nov	466			
21 Nov	15	Strata Avorago	1267 1	Strata Average	2205.9			
Strata Average	9346.7	Su ata Average	1307.1	Su ata Average	5205.8			
Sample Total	162,046	Sample Total	154,121	Sample Total	80,959			
Mean per/day	5,402	Mean per/day	5,137	Mean per/day	2,699			
03 Year Total Personnel	1,490,823	02 Year Total Personnel	1,417,913	01 Year Total Personnel	744,823			
03 Year Total Handcrew/engine Personnel	1,013,760	02 Year Total Handcrew/engine Personnel	964,181	01 Year Total Handcrew/engine Personnel	506,480			
2003 Man Hours		2002 Man Hours		2001 Man Hours				
Exposed	8,616,958	Exposed	8,195,538	Exposed	4,305,076			
2003 Entrapments		2002 Entrapments Fatal		2001 Entrapments				
	6	& Non-Fatal	59	Fatal & Non-Fatal	32			
Rate of Entrapment		Rate of		Rate of				
per exposure hours		exposure hours		exposure hours				
worked	1,436,160	worked	138,907	worked	134,534			
Entrapment Probability	0.000696301	Entrapment Probability	0.007199039	Entrapment Probability	0.007433086			

Stratified Man-hours Master Sheet

2000

Dandom famula	Total Personnel	
Days	Nationally	
10-Mar	1105	
17-Mar	22	
24-Mar	0	
10-Apr	1	
12-Apr	261	
14-Apr	216	
17-Apr	279	
9-May	1080	
24-May	711	
28-May	2174	
Strata Average	584.9	
3-Jun	4059	
22-Jun	1487	
1-Jul	3887	
2-Jul	3374	
3-Jul	1797	
5-Jul	2128	
14-Jul	1372	
17-Jul	3748	
2-Aug	14033	
9-Aug	17502	
Strata Average	5338.7	
12-Sep	5218	
14-Sep	3973	
17-Sep	4092	
23-Sep	4659	
29-Sep	1240	
2-Oct	3329	
28-Oct	174	
29-Oct	312	
17-Nov	0	
24-Nov	59	
Strata Average	2305.6	
Sample Total	82,292	
Mean per/day	2,743	
00 Year Total Personnel	757 086	
	757,000	
00 Year Total Handcrew/engine Personnel	514,819	
2000 Man Hours	4 375 050	
2000 Entronmente	4,375,959	
Fatal & Non-Fatal	79	
Rate of Entrapment		
per exposure hours		
worked	55,392	
Entrapment		
Probability	0.018053184	

19	99	1	998	1997			
Random Sample Days	Total Personnel Committed Nationally	Random Sample Days	Total Personnel Committed Nationally	Random Sample Days	Total Personnel Committed Nationally		
5-Mar	105	20-Mar	7	7-Mar	0		
12-Mar	16	3-Apr	58	16-Mar	0		
19-Mar	318	10-Apr	0	21-Mar	0		
26-Mar	9	17-Apr	138	12-Apr	No Report		
1-Apr	633	24-Apr	20	20-Apr	No Report		
9-Apr	49	4-May	0	28-Apr	No Report		
16-Apr	103	9-May	0	2-May	229		
20-Apr	410	16-May	599	13-May	141		
25-Apr	363	21-May	578	20-May	70/		
23-Api 23-May	556	21-May	578	20-May 21-May	301		
Strata Average	256 2	Strata Average	146 5	Strata Average	155 5		
6 lup	2004	21 lun	1052		155.5		
0-Juli 14 Jul	1910	21-Juli 22 Jun	1033	7-Juli 8 Jun	0		
14-Jul 15 Jul	1010	22-Juli 22 Jun	1042	0-Juli 9. Jun	0		
13-Jul	1278	23-Juli	1137	3-Juli	100		
25-Jul	4577	29-Jun 7 Jul	1962	29-Jun	188		
20-Jul	5477	7-Jul	4553	Iut-0	2014		
31-Jui	935	12-Jul	4158	20-Jul	405		
9-Aug	4308	15-Jul 21. Jul	2734	22-Jul	///		
10-Aug	3202	21-Jul	2602	26-Jul	6/6		
22-Aug	2501	13-Aug	1895	28-Jul	837		
25-Aug	6203	16-Aug	1976	14-Aug	1//2		
Strata Average	3238.5	Strata Average	2311.2	Strata Average	666.9		
1-Sep	9251	5-Sep	7969	7-Sep	1457		
23-Sep	611/	17-Sep	1111	13-Sep	53		
13-Oct	3509	24-Sep	0	16-Sep	200		
23-Oct	3018	30-Sep	667	17-Sep	100		
24-Oct	3332	6-Oct	1336	27-Sep	2039		
27-Oct	4457	24-Oct	2221	8-Oct	0		
3-Nov	1545	26-Oct	466	11-Oct	0		
12-Nov	54	29-Oct	212	25-Oct	337		
16-Nov	343	6-Nov	520	7-Nov	9		
20-Nov	1350	20-Nov	0	21-Nov	3		
Strata Average	3297.6	Strata Average	1450.2	Strata Average	419.8		
Sample Total	67,923	Sample Total	39,079	Sample Total	12,422		
Mean per/day	2,264	Mean per/day	1,303	Mean per/day	414		
99 Year Total Personnel	624,892	98 Year Total Personnel	359,527	97 Year Total Personnel	114,282		
99 Year Total Handcrew/engine Personnel	424,926	98 Year Total Handcrew/engine Personnel	244,478	97 Year Total Handcrew/engine Personnel	77,712		
1999 Man Hours		1998 Man Hours		1997 Man Hours			
Exposed	3,611,873	Exposed	2,078,065	Exposed	660,552		
1999 Entrapments Fatal & Non-Fatal	41	1998 Entrapments Fatal & Non-Fatal	20	1997 Entrapments Fatal & Non-Fatal	29		
Rate of Entrapment per exposure hours worked	88,094	Rate of Entrapment per exposure hours worked	103,903	Rate of Entrapment per exposure hours worked	22,778		
Entranment		Entranment	,	Entranment			
Probability	0.01135145	Probability	0.009624338	Probability	0.043902657		

19	96	1	1995	1994			
Random Sample Davs	Total Personnel Committed Nationally	Random Sample Davs	Total Personnel Committed Nationally	Random Sample Davs	Total Personnel Committed Nationally		
4-Mar	365	11-Mar	No Report	4-Mar	0		
15-Mar	320	22-Mar	No Report	11-Mar	0		
22-Mar	6	6-Apr	No Report	18-Mar	0		
12-Apr	61	22-Apr	No Report	25-Mar	0		
19-Apr	129	25-Apr	No Report	15-Apr	0		
6-May	2181	10-May	No Report	22-Apr	0		
9-May	1879	11-May	No Report	24-Apr	0		
11-May	605	16-May	No Report	26-Apr	0		
15-May	753	19-May	No Report	29-Apr	0		
20-May	1526	21-May	No Report	24-May	381		
Strata Average	782.5	Strata Average	0	Strata Average	38.1		
4-Jun	602	15-Jun	914	4-Jun	1106		
18-Jun	2158	17-Jun	676	6-Jun	811		
22-Jun	889	19-Jun	769	19-Jun	2272		
24-Jun	4529	20-Jun	706	8-Jul	5459		
10-Jul	2800	22-Jun	1285	10-Jul	2882		
26-Jul	2372	10-Jul	1907	13-Jul	4217		
28-Jul	5816	19-Jul	0	25-Jul	3840		
30-Jul	2286	31-Jul	4180	15-Aug	16896		
8-Aug	6271	1-Aug	3875	18-Aug	18700		
20-Aug	18202	24-Aug	0	19-Aug	19185		
Strata Average	4592.5	Strata Average	1431.2	Strata Average	7536.8		
18-Sep	0	9-Sep	1248	3-Sep	17323		
22-Sep	265	13-Sep	115	5-Sep	14102		
24-Sep	95	14-Sep	306	7-Sep	12037		
29-Sep	1194	28-Sep	591	10-Sep	10126		
4-Oct	641	29-Sep	15	11-Sep	9037		
10-Oct	1266	6-Oct	3133	1-Oct	7248		
12-Oct	2729	13-Oct	0	11-Oct	1654		
14-Oct	2550	9-Nov	0	21-Oct	0		
1-Nov	50	17-Nov	0	21-Nov	0		
15-Nov	0	24-Nov	0	24-Nov	386		
Strata Average	879	Strata Average	540.8	Strata Average	7191.3		
Sample Total	62,540	Sample Total	19,720	Sample Total	147,662		
Mean per/day	2,085	Mean per/day	657	Mean per/day	4,922		
96 Year Total Personnel	575,368	95 Year Total Personnel	181,424	94 Year Total Personnel	1,358,490		
96 Year Total Handcrew/engine Personnel	391,250	95 Year Total Handcrew/engine Personnel	123,368	94 Year Total Handcrew/engine Personnel	923,773		
1996 Man Hours		1995 Man Hours		1994 Man Hours			
Exposed	3,325,627	Exposed	1,048,631	Exposed	7,852,075		
1996 Entrapments Fatal & Non-Fatal	200	1995 Entrapments Fatal & Non-Fatal	9	1994 Entrapments Fatal & Non-Fatal	117		
Rate of Entrapment per exposure hours		Rate of Entrapment per exposure hours		Rate of Entrapment per exposure hours			
worked	16,628	worked	116,515	worked	67,112		
Entrapment Probability	0 060120025	Entrapment Probability	0 000503631	Entrapment Probability	0.014000531		
·······································	0.000133033	osasinty	0.000002021	·······································	0.014000021		

Stratified Man-Hours Master Sheet

19	93	19	92	1991			
Random Sample Days	Total Personnel Committed Nationally	Random Sample Days	Total Personnel Committed Nationally	Random Sample Days	Total Personnel Committed Nationally		
2-Mar	No Report	2-Mar	No Report	24-Mar	No Report		
16-Mar	No Report	9-Mar	No Report	2-Apr	No Report		
19-Mar	No Report	17-Mar	No Report	4-Apr	No Report		
29-Mar	No Report	27-Mar	No Report	5-Apr	No Report		
10-Apr	No Report	31-Mar	No Report	16-Apr	No Report		
17-Apr	No Report	9-Mar	No Report	3-May	No Report		
18-Apr	No Report	17-Mar	No Report	6-May	No Report		
20-Apr	No Report	24-Mar	No Report	8-May	No Report		
21-Apr	No Report	29-Mar	No Report	14-May	No Report		
28-Apr	No Report	29-May	No Report	28-May	No Report		
Strata Average	0	Strata Average	0	Strata Average	0		
3-Jun	No Report	8-Jun	No Report	3-Jun	No Report		
4-Jun	No Report	9-Jun	No Report	9-Jun	No Report		
4-Jul	No Report	16-Jun	No Report	13-Jun	No Report		
11-Jul	No Report	27-Jun	No Report	24-Jun	No Report		
21-Jul	No Report	6-Jul	No Report	28-Jun	No Report		
9-Aug	No Report	8-Jul	No Report	20-Jul	No Report		
12-Aug	No Report	16-Jul	No Report	21-Jul	No Report		
18-Aug	No Report	19-Jul	No Report	8-Aug	No Report		
19-Aug	No Report	18-Aug	No Report	10-Aug	No Report		
27-Aug	No Report	21-Aug	No Report	14-Aug	No Report		
Strata Average	0	Strata Average	0	Strata Average	0		
7-Sep	No Report	1-Sep	No Report	15-Sep	No Report		
21-Sep	No Report	12-Sep	No Report	1-Oct	No Report		
30-Sep	No Report	18-Sep	No Report	9-Oct	No Report		
6-Oct	No Report	12-Oct	No Report	25-Oct	No Report		
13-Oct	No Report	20-Oct	No Report	2-Nov	No Report		
16-Oct	No Report	29-Oct	No Report	6-Nov	No Report		
23-Oct	No Report	13-Nov	No Report	15-Nov	No Report		
12-Nov	No Report	17-Nov	No Report	19-Nov	No Report		
19-Nov	No Report	20-Nov	No Report	22-Nov	No Report		
24-Nov	No Report	25-Nov	No Report	23-Nov	No Report		
Strata Average	0	Strata Average	0	Strata Average	0		

1993 Entrapments1992 Entrapments1991 EntrapmentsFatal & Non-Fatal38Fatal & Non-Fatal2Fatal & Non-Fatal29

Stratified Man-hours Master Sheet

Random Sample Days	Total Personnel Committed Nationally	l
4-Mar	No Report	
7-Mar	No Report	
10-Mar	No Report	
12-Mar	No Report	
17-Mar	No Report	
6-Apr	No Report	
14-Apr	No Report	
19-Apr	No Report	
21-May	No Report	
29-May	No Report	
Strata Average		0
1-Jun	No Report	
18-Jun	No Report	
19-Jun	No Report	
25-Jun	No Report	
11-Jul	No Report	
16-Jul	No Report	
6-Aug	No Report	
19-Aug	No Report	
21-Aug	No Report	
25-Aug	No Report	
Strata Average		0
1-Sep	No Report	
11-Sep	No Report	
21-Sep	No Report	
24-Sep	No Report	
30-Sep	No Report	
23-Oct	No Report	
6-Nov	No Report	
10-Nov	No Report	
11-Nov	No Report	
17-Nov	No Report	
Strata Average		0

1990 Entrapments Fatal & Non-Fatal

31

Appendix B:

	<u>2009</u>			<u>2008</u>			<u>2007</u>	<u>2007</u>			
Date	Agency	Qty	Date	Agency	Qty	Date	Agency	Qty	Date	Agency	Qty
1-Feb	VFD	2	8-Jan	STATE	2				18-Feb	STATE	1
		A	bove data	a is outside	of this	s study's specified fire		seaso	n		
3-Apr	VFD	3	25-Mar	VFD	4	28-Apr	STATE	1	1-Mar	VFD	2
9-Apr	TRIBE	2	19-Apr	STATE	1	23-May	STATE	1	2-Mar	VFD	3
22-Apr	STATE	2	Strata To	otal	5	Strata To	otal	2	2-Mar	VFD	4
6-May	COUNTY	3	10-Jun	METRO	3	26-Jun	FED	2	12-Mar	VFD	1
Strata T	otal	10	11-Jun	STATE	3	27-Jun	FED	8	19-Mar	STATE	1
22-Jun	STATE	5	11-Jun	FED	4	7-Jul	STATE	9	21-Mar	FED	1
3-Aug	FED	12	26-Jul	VFD	2	7-Jul	STATE	1	7-Apr	VFD	2
3-Aug	STATE	6	Strata To	otal	12	8-Jul	FED	2	12-Apr	FED	2
26-Aug	FED	1				28-Jul	FED	1	17-Apr	FED	1
Strata Total 24 Strata Total		0	7-Aug	FED	3	Strata To	otal	17			
						12-Aug	CONTR.	2	18-Jun	FED	1
Strata T	otal	0				20-Aug	FED	2	27-Jun	STATE	5
						Strata To	otal	30	30-Jun	FED	2
						12-Sep	STATE	1	6-Jul	FED	4
						22-Sep	STATE	2	11-Jul	FED	9
						21-Oct	STATE	4	25-Jul	FED	6
						22-Oct	COUNTY	12	27-Jul	STATE	1
						12-Nov	COUNTY	2	17-Aug	FED	1
						Strata To	otal	21	23-Aug	FED	2
									23-Aug	CONTR.	1
									Strata To	otal	32
									26-Oct	FED	5
									Strata To	otal	5
Mar-Nov	/		Mar-Nov			Mar-Nov			Mar-Nov		
Entrapm	ents	34	Entrapmo	ents	17	Entrapme	ents	53	Entrapme	ents	54
CY Entra	pments	36	CY Entrap	oments	19	CY Entrap	oments	53	CY Entrap	ments	55

Data	<u>2005</u>	0	Data	<u>2004</u>	0	Data	<u>2003</u>	0	Data	<u>2002</u>	0
Date	Agency	Qty	Date	Agency	Qty	Date	Agency	Qty	Date	Agency	Qty
21-Feb	FED	T	18-FeD		1						
			24-reu Nove data		of this	l s study's sn	ocified fire) n		
8-Anr	VED	3			or this	11-May	FFD	2 30030	24-Mar	FED	2
5-May	FED	1	Strata To	tal		15-May	FED	1	Strata To	tal	2
Strata To	tal	4	22-Mar	FED	1	Strata To	tal	4	15-lun	FFD	2
16-Jul	FFD	3	28-lun	VED	2	22-Jul	FFD	2	17-lun	STATE	6
23-Jul	FFD	2	2-Jul	FFD	12	Strata To	tal	2	30-Jun	FFD	5
10-Aug	FED	3	14-Jul	FED	21			-	3-Jul	VFD	1
Strata To	otal	8	Strata To	otal	36	Strata To	tal	0	13-Jul	FED	2
12-Nov	VFD	1	12-Sep	STATE	7				24-Jul	CONTR	17
30-Nov	VFD	1	Strata To	otal	7				12-Aug	STATE	3
Strata To	otal	2							Strata To	tal	36
									1-Sep	FED	16
									3-Sep	COUNTY	5
									Strata To	otal	21
Mar Nov			Mar Nov			Mar Nov			Mar Nov		
Entrapme	ents	14	Entrapme	ents	43	Entrapme	nts	6	Entrapme	ents	59
CY Entrap	oments	15	CY Entrap	oments	47	CY Entrap	ments	6	CY Entrap	ments	59

	<u>2001</u>	0.		<u>2000</u>	0.		<u>1999</u>	0.		<u>1998</u>	<u>.</u>
Date	Agency	Qty	Date	Agency	Qty	Date	Agency	Qty	Date	Agency	Qty
						9-гер	VFD	1			
		A	bove data	is outside d	of this	ı study's spe	ecified fire	seasor	ו ו		
21-											
Mar	MILITARY	3	6-Mar	VFD	3	14-Mar	VFD	3	1-Apr	STATE	2
Strata To	otal	3	6-Apr	STATE	2	6-Apr	VFD	2	30-Apr	VFD	2
10-Jul	FED	14	7-May	FED	3	17-Apr	STATE	2	Strata T	otal	4
13-Aug	FED	2	24-May	FED	3	4-May	FED	2	16-Jun	STATE	1
Strata To	otal	16	Strata To	otal	11	Strata To	otal	9	18-Jun	STATE	1
25-Oct	FED	9	4-Jun	STATE	17	11-Jun	FED	7	22-Jun	STATE	1
10-Nov	FED	4	4-Jun	FED	17	2-Jul	FED	2	24-Jun	STATE	2
Strata To	otal	13	9-Jun	VFD	2	22-Jul	FED	5	20-Jul	STATE	1
			13-Jun	STATE	3	9-Aug	FED	6	22-Jul	VFD	3
			1-Jul	VFD	2	9-Aug	VFD	1	29-Jul	STATE	2
			7-Jul	CONTR.	1	15-Aug	STATE	2	Strata T	otal	11
			9-Jul	VFD	3	24-Aug	STATE	2	9-Sep	STATE	1
			31-Jul	FED	1	24-Aug	CONTR.	1	19-Sep	COUNTY	1
			2-Aug	STATE	4	Strata To	otal	26	14-Oct	VFD	2
			11-Aug	FED	2	14-Sep	STATE	2	18-Nov	STATE	1
			16-Aug	CONTR.	3	19-Oct	STATE	4	Strata T	otal	5
			23-Aug	FED	9	22-Nov	FED	2			
			25-Aug	STATE	1	Strata To	otal	8			
			Strata To	tal	65						
			3-Sep	STATE	1						
			12-Oct	STATE	1						
			1-Nov	VFD	1						
			Strata To	otal	3						
Mar-Nov	/ onto	22	Mar-Nov	nto	70	Mar-Nov	onto	42	Mar-Nov	/	20
CY Entrai	oments	32	CY Entrac	ments	79	CYl Entra	pments	45 44	CY Entra	pments	20

	<u>1997</u>			<u>1996</u>		_	<u>1995</u>			<u>1994</u>	
Date	Agency	Qty	Date	Agency	Qty	Date	Agency	Qty	Date	Agency	Qty
		Δ	l Joove data	is outside	of this	l studv's sr	ecified fire	seaso	n		
5-May	STATE	2	15-Mar	VFD	1	4-Anr	STATE	1	1-Apr	FED	1
Strata T	otal	2	26-Apr	VED	48	10-Apr	FED	2	3-Anr	VED	1
6-Aug	FED	23	Strata To	tal	19	Strata To	tal	2	Strata To	tal	2
7-Δισ	CONTR	25 4	4-lun	4-Jun STATE 1		28-Jul	VED	2	1-lun	FED	2
Strata T	otal	27	21-lun	FED	21	20 Jul 23-Διισ	VED	7	2-lun	FED	1
Juata	otai	27	21 Jun	FED	21	Strata To	tal	-	2 Jun 1/Lun	FED	5
Strata T	otal	0	23 Jun 24-lun	FED	2	Stratart		U	25-lun	FED	1
Stratar	otai	0	6-1ul	FED	2	Strata To	tal	0	20-Jun	FED	7
					2	Stratart		0	2.J-Jul		, E
			24-Jui		2				2-Jul		2
			14-Aug		4				3-JUI		3
			20-Aug	FED	3				D-JUI	FED	49
			25-Aug	FED	10				22-Jui	FED	8 22
			26-Aug	VFD	3				5-Aug	FED	22
			26-Aug	FED	53				13-Aug	FED	1
			28-Aug	FED	6				Strata To	otal	108
			31-Aug	FED	1				2-Sep	FED	4
			Strata To	otal	123				20-Nov	FED	3
			1-Sep	PRVT.	2				Strata To	otal	7
			4-Sep	FED	14						
			22-Oct	METRO	12						
			Strata To	otal	28						
Mar-No	/		Mar-Nov			Mar-Nov			Mar-Nov		
Entrapm	ents	29	Entrapme	ents	200	Entrapme	ents	9	Entrapme	ents	117
CY Entra	pments	29	CY Entrap	oments	200	CY Entrap	oments	9	CY Entrap	oments	117

	<u>1993</u>			<u>1992</u>			<u>1991</u>			<u>1990</u>	-
Date	Agency	Qty	Date	Agency	Qty	Date	Agency	Qty	Date	Agency	Qty
						21-Feb	FED	1			
		А	bove data	is outside (of this	study's sp	ecified fire	seaso	n		
10-Mar	STATE	1	17-Mar	N/A	1						
22-Apr	FED	16	Strata To	otal	1	Strata To	otal	0	Strata To	otal	0
27-May	FED	1	3-Aug	N/A	1	21-Aug	FED	3	26-Jun	STATE	11
Strata To	tal	18	Strata To	otal	1	Strata To	otal	3	27-Jun	STATE	17
17-Jun	FED	1				21-Oct	VFD	4	26-Aug	STATE	2
20-Aug	COUNTY	9	Strata To	otal		29-Oct	STATE	20	Strata To	otal	30
Strata To	tal	10				12-Nov	FED	2	15-Oct	STATE	1
23-Oct	FED	2				Strata To	otal	26	Strata To	otal	1
27-Oct	METRO	4									
2-Nov	STATE	4									
Mar-Nov Entrapme	ents ments	76 76	Mar-Nov Entrapmo	ents	2	Mar-Nov Entrapmo	ents	29 30	Mar-Nov Entrapm	, ents	31
er entrap		, 0	C. Linciap		<u> </u>	er Entrap		30	er Entra		91

Appendix C:

Situation Report Information

SIT Report Criteria (Requirements for inclusion in daily report:

- Fuel Models 1-6 > 300 acres
- Fuel Models 7-13 > 100 acres
- There is an Incident Management team assigned (even if acreage is less than stated above)

Categories of interest:

NORTHERN CALIFORNIA AREA INCIDENTS/LARGE FIRES:

YOLLA BOLLY COMPLEX, Mendocino National Forest. A Fire Use Management Team (Perkins) is assigned. This lightning-caused Wildland Fire Use (WFU) incident is being managed to accomplish resource objectives. This fire is burning 35 miles west of Red Bluff, CA in timber. Increased fire activity on the southwest flank, short uphill runs, and spotting were observed.

INCIDENT NAME	ST	UNIT	SIZE	° CTN	EST CTN	TOTL PERS	CRW	ENG	HELI	STRC LOST	\$\$\$ CTD	ORIGIN OWN
YOLLA BOLLY COMPLEX – WFU	CA	MNF	1,050	N/A	N/A	93	4	0	2	0	495K	FS
LAVA	CA	MDF	220	100		1	0	0	0	0	3.0K	FS

MDF – Modoc National Forest

ROCKY MOUNTAIN AREA INCIDENTS/LARGE FIRES:

DRY MEDICINE CREEK, Bighorn National Forest. This fire is 30 miles east of Greybull, WY in timber. Minimal fire activity was observed.

INCIDENT NAME	ST	UNIT	SIZE	° CTN	EST CTN	TOTL PERS	CRW	ENG	HELI	STRC LOST	\$\$\$ CTD	ORIGIN OWN
DRY MEDICINE CREEK	WY	BHF	120	80	7/10	110	4	2	1	0	243K	FS
LITTLE VENUS – WFU	WY	SHF	715	N/A	N/A	15	0	0	0	0	183K	FS
FOUR BEAR	SD	CRA	2,093	100		11	0	19	0	1	22K	BIA
CLUBHOUSE	SD	CRA	907	100		7	0	3	0	4	52K	BIA
* 2900 ROAD	KS	KSX	800	100		37	0	10	0	0	NR	CNTY

SHF – Shoshone National Forest KSX – Kansas Counties CRA - Cheyenne River Agency, Bureau of Indian Affairs

Federal "L" Series Training Course Attainment Percentiles

US Forest Service "L" Series Training Course Attainment Percentiles

Appendix E:

"L" Course Attainment Time Frames

Note: Queries run by the IQCS database contained large amounts of data resulting in an omission of its data in this report. This data is available through the IQCS database or through this project's author upon request.